TopP-S: Persistent homology based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility

نویسندگان

  • Kedi Wu
  • Zhixiong Zhao
  • Renxiao Wang
  • Guo-Wei Wei
چکیده

Aqueous solubility and partition coefficient are important physical properties of small molecules. Accurate theoretical prediction of aqueous solubility and partition coefficient plays an important role in drug design and discovery. The prediction accuracy depends crucially on molecular descriptors which are typically derived from theoretical understanding of the chemistry and physics of small molecules. The present work introduces an algebraic topology based method, called element specific persistent homology (ESPH), as a new representation of small molecules that is entirely different from conventional chemical and/or physical representations. ESPH describes molecular properties in terms of multiscale and multicomponent topological invariants. Such topological representation is systematical, comprehensive, and scalable with respect to molecular size and composition variations. However, it cannot be literally translated into a physical interpretation. Fortunately, it is readily suitable for machine learning methods, rendering topological learning algorithms. Due to the inherent correlation between solubility and partition coefficient, a uniform ESPH representation is developed for both properties, which facilitates multi-task deep neural networks for their simultaneous predictions. This strategy leads to more accurate prediction of relatively small data sets. A total of six data sets is considered in the present work to validate the proposed topological and multi-task deep learning approaches. It is demonstrate that the proposed approaches achieve some of the most accurate predictions of aqueous solubility and partition coefficient. Our software is available online at http://weilab.math.msu.edu/TopP-S/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions

Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D co...

متن کامل

Applying Topological Persistence in Convolutional Neural Network for Music Audio Signals

Recent years have witnessed an increased interest in the application of persistent homology, a topological tool for data analysis, to machine learning problems. Persistent homology is known for its ability to numerically characterize the shapes of spaces induced by features or functions. On the other hand, deep neural networks have been shown effective in various tasks. To our best knowledge, h...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models

Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017